Transport and Entanglement in Disordered XY Chains

Houssam Abdul-Rahman
University of Arizona

Based on a joint work with B. Nachtergaele, R. Sims, and G. Stolz.

QMath13, Georgia Tech

Overview

- The XY chain.
- Dynamical entanglement.
- Particle number transport.
- Energy transport.

The XY Chain

An Anisotropic XY Chain in Random Transversal Magnetic Field

$$
H=-\sum_{j=1}^{n-1} \mu_{j}\left[\left(1+\gamma_{j}\right) \sigma_{j}^{x} \sigma_{j+1}^{x}+\left(1-\gamma_{j}\right) \sigma_{j}^{y} \sigma_{j+1}^{y}\right]-\sum_{j=1}^{n} \nu_{j} \sigma_{j}^{z}
$$

- $\Lambda=[1, n], \Lambda_{0}$ a block of spins (subinterval of Λ).
- The Hilbert space: $\mathcal{H}:=\bigotimes_{x \in \Lambda} \mathcal{H}_{x}=\left(\mathbb{C}^{2}\right)^{\otimes n}, \quad \operatorname{dim} \mathcal{H}=2^{n}$.
- μ_{j}, γ_{j} and ν_{j} are i.i.d.

The XY Chain

Jordan-Wigner Transform

\downarrow Jordan-Wigner \downarrow

$$
H=\mathcal{C}^{*} M \mathcal{C}, \mathcal{C}:=\left(c_{1}, c_{1}^{*}, c_{2}, c_{2}^{*}, \ldots, c_{n}, c_{n}^{*}\right)^{t}
$$

M is the block Jacobi matrix

$$
\begin{gathered}
M:=\left(\begin{array}{cccc}
-\nu_{1} \sigma^{z} & \mu_{1} S\left(\gamma_{1}\right) & & \\
\mu_{1} S\left(\gamma_{1}\right)^{t} & \ddots & \ddots & \\
& \ddots & \ddots & \mu_{n-1} S\left(\gamma_{n-1}\right) \\
& & \mu_{n-1} S\left(\gamma_{n-1}\right)^{t} & -\nu_{n} \sigma^{z}
\end{array}\right), \\
S(\gamma)=\left(\begin{array}{cc}
1 & \gamma \\
-\gamma & -1
\end{array}\right), \sigma^{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{gathered}
$$

The XY Chain

Assumptions

Assumptions:

- The XY chain H has almost sure simple spectrum.
- M satisfies eigencorrelator localization, i.e $\mathbb{E}\left(\sup _{|g| \leq 1}\left\|g(M)_{j k}\right\|\right) \leq C_{0}(1+|j-k|)^{-\beta}$, for some $\beta>6$.

Applications:

$\mu_{j}=\mu, \gamma_{j}=\gamma$ for all $j \in \mathbb{N}$.
ν_{j} are i.i.d from an absolutely continuous, compactly supported distribution.

- Isotropic case $(\gamma=0): M \longrightarrow$ Anderson Model.
- Anisotropic case $(\gamma \neq 0)$:
- Large disorder case.
- Uniform spectral gap for M around zero.

Chapman /Stolz (2014).

Dynamical Entanglement

The Entanglement Entropy and the Entanglement of Formation

Fix $\Lambda_{0} \subseteq \Lambda$, consider the decomposition:

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{\Lambda_{0}} \otimes \mathcal{H}_{\Lambda \backslash \Lambda_{0}}, \text { where } \mathcal{H}_{\Lambda_{0}}=\bigotimes_{x \in \Lambda_{0}} \mathcal{H}_{x}, \quad \mathcal{H}_{\Lambda \backslash \Lambda_{0}}=\bigotimes_{x \in \Lambda \backslash \Lambda_{0}} \mathcal{H}_{x} \tag{1}
\end{equation*}
$$

Let ρ be a pure state in $\mathcal{B}(\mathcal{H})$, then

$$
\mathcal{E}(\rho)=-\operatorname{Tr}\left[\rho^{1} \log \rho^{1}\right], \quad \text { where } \rho^{1}=\operatorname{Tr}_{\mathcal{H}_{2}} \rho .
$$

For any (mixed) state $\rho \in \mathcal{B}(\mathcal{H})$, then

$$
\left.E_{f}(\rho)=\inf _{p_{k}, \psi_{k}} \sum_{k} p_{k} \mathcal{E}\left(\left|\psi_{k}\right\rangle\right\rangle \psi_{k} \mid\right)
$$

Dynamical Entanglement

Motivation Question

- For $1 \leq \ell \leq n$, let $H_{[1, \ell]}$ and $H_{[\ell+1, n]}$ be the restrictions of H to the corresponding interval.
- Let $\rho^{(1)}$ and $\rho^{(2)}$ be any eigenstates/thermal states of $H_{[1, \ell]}$ and $H_{[\ell+1, n]}$, respectively.
- We study $\rho_{t}:=e^{-i t H}\left(\rho^{(1)} \otimes \rho^{(2)}\right) e^{i t H}$.
- ρ_{t} is an entangled state with respect to $\mathcal{H}_{[1, \ell]} \otimes \mathcal{H}_{[\ell+1, n]}$.

Question:
What can we say about the entanglement of ρ_{t} ?

Dynamical Entanglement

Motivation Question

- For $1 \leq \ell \leq n$, let $H_{[1, \ell]}$ and $H_{[\ell+1, n]}$ be the restrictions of H to the corresponding interval.
- Let $\rho^{(1)}$ and $\rho^{(2)}$ be any eigenstates/thermal states of $H_{[1, \ell]}$ and $H_{[\ell+1, n]}$, respectively.
- We study $\rho_{t}:=e^{-i t H}\left(\rho^{(1)} \otimes \rho^{(2)}\right) e^{i t H}$.
- ρ_{t} is an entangled state with respect to $\mathcal{H}_{[1, \ell]} \otimes \mathcal{H}_{[\ell+1, n]}$.

Question:

What can we say about the entanglement of ρ_{t} ?

Dynamical Entanglement

In general

- Decompose Λ into disjoint intervals $\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{m}$.
- $H_{\Lambda_{k}}$ is the restriction of H to Λ_{k}.
- ψ_{k} is an eigenfunction of $H_{\Lambda_{k}}$, and $\rho_{k}=\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$.
- Define $\rho=\bigotimes_{k=1}^{m} \rho_{k}$, and its dynamics $\rho_{t}=e^{-i t H} \rho e^{i t H}$.

Dynamical Entanglement: Main Theorem

DYNAMICS OF PRODUCTS OF EIGENSTATES

Theorem

There exists $C<\infty$ such that

$$
\mathbb{E}\left(\sup _{t,\left\{\psi_{k}\right\}_{k=1,2, \ldots, m}} \mathcal{E}\left(\rho_{t}\right)\right) \leq C
$$

for all n, m, any choice of the interval $\Lambda_{0} \subset \Lambda$ and all decompositions $\Lambda_{1}, \ldots, \Lambda_{m}$ of $\Lambda=[1, n]$.

Dynamical Entanglement: Corollaries

Dynamics of Product of Thermal States

- $\rho_{\beta_{k}}$ is a thermal state of $H_{\Lambda_{k}}$.
- Define $\rho_{\beta}=\bigotimes_{k=1}^{m} \rho_{\beta_{k}}$, and its dynamics $\left(\rho_{\beta}\right)_{t}=e^{-i t H} \rho_{\beta} e^{i t H}$.

Result:

$$
\mathbb{E}\left(\sup _{t, \beta} E_{f}\left(\left(\rho_{\beta}\right)_{t}\right)\right) \leq C
$$

Dynamical Entanglement: Corollaries

Dynamics of Up-Down Spins

If $m=n$

- number of decompositions is n.
- eigenfunctions are up and down spins: $e_{\uparrow}:=|\uparrow\rangle$ and $e_{\downarrow}:=|\downarrow\rangle$.

For $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in\{\uparrow, \downarrow\}^{n}$, the up-down configuration associated with α is given by:

$$
e_{\alpha}=e_{\alpha_{1}} \otimes e_{\alpha_{2}} \otimes \ldots \otimes e_{\alpha_{n}}
$$

Result: $\mathbb{E}\left(\sup _{\alpha} \mathcal{E}\left(e^{-i t H}\left|e_{\alpha}\right\rangle\left\langle e_{\alpha}\right| e^{i t H}\right)\right)<C$.
Barderson, Pollman, and Moore (2012).

Dynamical Entanglement: Corollaries

Entanglement of Eigenstates

For $m=1$ (No Decomposition)
Let ψ be an eigenfunction of the full $X Y$ chain H.

Let ρ_{β} be a thermal state of the full XY chain H.
Result: $\mathbb{E}\left(\sup _{\beta} E_{f}\left(\rho_{\beta}\right)\right)<C$.

Particle Number Transport

An Isotropic XY Chain in Random Transversal Magnetic Field

$$
H_{\mathrm{iso}}=-\sum_{j=1}^{n-1}\left[\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}\right]-\sum_{j=1}^{n} \nu_{j} \sigma_{j}^{z}
$$

\downarrow Jordan-Wigner \downarrow

$$
H_{\mathrm{iso}}=c^{*} A c+\left(\sum_{j} \nu_{j}\right) \mathbb{1}, \text { where } c:=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{t}
$$

$$
A:=\left(\begin{array}{cccc}
-\nu_{1} & \mu & & \\
\mu & \ddots & \ddots & \\
& \ddots & \ddots & \mu \\
& & \mu & -\nu_{n}
\end{array}\right), \quad \mathbb{E}\left(\sup _{|g| \leq 1}\left|\left\langle e_{j}, g(A) e_{k}\right\rangle\right|\right) \leq C e^{-\eta|j-k|}
$$

Particle Number Transport

The Particle Number Operator

$$
\mathcal{N}:=\sum_{j \in \Lambda}\left|e_{\uparrow}\right\rangle\left\langle\left. e_{\uparrow}\right|_{j} \text { and } \mathcal{N}_{S}:=\sum_{j \in S} \mid e_{\uparrow}\right\rangle\left\langle\left. e_{\uparrow}\right|_{j}\right.
$$

- $\mathcal{N} e_{\alpha}=k e_{\alpha}$, where $k=\left|\left\{j: \alpha_{j}=\uparrow\right\}\right|$.
- Let $\rho=\left|e_{\alpha}\right\rangle\left\langle e_{\alpha}\right|$ then $\langle\mathcal{N}\rangle_{\rho}:=\operatorname{Tr} \mathcal{N} \rho=k$ is the expected number of up-spins.
- $[H, \mathcal{N}]=0 \Rightarrow$ The number of up-spins is conserved in time.
- $\rho_{t}=e^{-i t H_{\text {iso }}} \rho e^{i t H_{\text {iso }}}$ is the time evolution of ρ.
- $\left\langle\mathcal{N}_{S}\right\rangle_{\rho_{t}}$ is the expected number of up-spins in S at time t.

Particle Number Transport

Results

- Fix $S_{1} \subset \Lambda$ and $S_{2} \subset \Lambda \backslash\left[\min S_{1}, \max S_{1}\right]$.
- Initial state: $\rho=\bigotimes_{j=1}^{n}\left(\begin{array}{cc}\eta_{j} & 0 \\ 0 & 1-\eta_{j}\end{array}\right)$, with $\eta_{j}=0$ for all $j \notin S_{2}$.

$$
\mathbb{E}\left(\sup _{t}\left\langle\mathcal{N}_{S_{1}}\right\rangle_{\rho_{t}}\right) \leq \frac{4 C}{\left(1+e^{-\eta}\right)^{2}} e^{-\eta \operatorname{dist}\left(S_{1}, S_{2}\right)}
$$

Similar results for disordered Tonks-Girardeau gas, Seiringer/Warzel (2016).

Energy Transport

Isotropic Case

- Fix $S_{1}=[a, b] \subset \Lambda$ and $S_{2} \subset \Lambda \backslash S_{1}$.
- Initial state: $\rho=\bigotimes_{j=1}^{n}\left(\begin{array}{cc}\eta_{j} & 0 \\ 0 & 1-\eta_{j}\end{array}\right)$, with $\eta_{j}=0$ for all $j \notin S_{2}$.

$$
\mathbb{E}\left(\sup _{t}\left|\left\langle H_{S_{1}}\right\rangle_{\rho_{t}}-\left\langle H_{S_{1}}\right\rangle_{\rho}\right|\right) \leq \frac{4 C D}{\left(1+e^{-\eta}\right)^{2}} e^{-\eta d i s t\left(S_{1}, S_{2}\right)},
$$

where $D=\sup _{n}\left\|A_{n}\right\|$.

Energy Transport

Anisotropic Case

- Fix $S=[a, b] \subset \Lambda$.
- H_{S} is the restriction of the XY chain to S.
- Initial state: $\rho=\bigotimes_{j=1}^{n}\left(\begin{array}{cc}\eta_{j} & 0 \\ 0 & 1-\eta_{j}\end{array}\right)$.

$$
\mathbb{E}\left(\sup _{t}\left|\left\langle H_{S}\right\rangle_{\rho_{t}}-\left\langle H_{S}\right\rangle_{\rho}\right|\right) \leq \tilde{C}
$$

Thank you.

