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The XY Chain
An Anisotropic XY Chain in Random Transversal Magnetic Field

H = −
n−1∑
j=1

µj [(1 + γj)σ
x
j σ

x
j+1 + (1− γj)σyj σ

y
j+1]−

n∑
j=1

νjσ
z
j

Λ = [1, n], Λ0 a block of spins (subinterval of Λ).

The Hilbert space: H :=
⊗
x∈Λ

Hx = (C2)⊗n, dimH = 2n.

µj , γj and νj are i.i.d.
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The XY Chain
Jordan-Wigner Transform

↓ Jordan-Wigner ↓
H = C∗MC, C := (c1, c

∗
1, c2, c

∗
2, . . . , cn, c

∗
n)t.

M is the block Jacobi matrix

M :=


−ν1σ

z µ1S(γ1)

µ1S(γ1)t
. . .

. . .
. . .

. . . µn−1S(γn−1)
µn−1S(γn−1)t −νnσz

 ,

S(γ) =

(
1 γ
−γ −1

)
, σz =

(
1 0
0 −1

)
.
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The XY Chain
Assumptions

Assumptions:

The XY chain H has almost sure simple spectrum.

M satisfies eigencorrelator localization, i.e
E
(

sup|g|≤1 ‖g(M)jk‖
)
≤ C0(1 + |j − k|)−β, for some β > 6.

Applications:
µj = µ, γj = γ for all j ∈ N.
νj are i.i.d from an absolutely continuous, compactly supported
distribution.

Isotropic case (γ = 0): M −→ Anderson Model.

Anisotropic case (γ 6= 0):
I Large disorder case. Elgart/Shamis/Sodin (2012).

I Uniform spectral gap for M around zero. Chapman /Stolz (2014).
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Dynamical Entanglement
The Entanglement Entropy and the Entanglement of Formation

Λ
0

  

Fix Λ0 ⊆ Λ, consider the decomposition:

H = HΛ0 ⊗HΛ\Λ0
, where HΛ0 =

⊗
x∈Λ0

Hx, HΛ\Λ0
=

⊗
x∈Λ\Λ0

Hx. (1)

Let ρ be a pure state in B(H), then

E(ρ) = −Tr
[
ρ1 log ρ1

]
, where ρ1 = TrH2 ρ.

For any (mixed) state ρ ∈ B(H), then

Ef (ρ) = inf
pk,ψk

∑
k

pkE (|ψk〉〉ψk|).
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Dynamical Entanglement
Motivation Question

  

For 1 ≤ ` ≤ n, let H[1,`] and H[`+1,n] be the restrictions of H to the
corresponding interval.

Let ρ(1) and ρ(2) be any eigenstates/thermal states of H[1,`] and
H[`+1,n], respectively.

We study ρt := e−itH
(
ρ(1) ⊗ ρ(2)

)
eitH .

ρt is an entangled state with respect to H[1,`] ⊗H[`+1,n].

Question:
What can we say about the entanglement of ρt?
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Dynamical Entanglement
Problem Setting

Λ2

  

Λ1 Λ3 Λ4

Λ0

In general

Decompose Λ into disjoint intervals Λ1, Λ2, . . . , Λm.

HΛk
is the restriction of H to Λk.

ψk is an eigenfunction of HΛk
, and ρk = |ψk〉〈ψk|.

Define ρ =
⊗m

k=1 ρk, and its dynamics ρt = e−itHρeitH .
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Dynamical Entanglement: Main Theorem
Dynamics of products of eigenstates

Λ2

  

Λ1 Λ3 Λ4

Λ0

Theorem

There exists C <∞ such that

E

(
sup

t,{ψk}k=1,2,...,m

E(ρt)

)
≤ C

for all n, m, any choice of the interval Λ0 ⊂ Λ and all decompositions
Λ1, . . . ,Λm of Λ = [1, n].
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Dynamical Entanglement: Corollaries
Dynamics of Product of Thermal States

Λ2

  

Λ1 Λ3 Λ4

Λ0

ρβk is a thermal state of HΛk
.

Define ρβ =
⊗m

k=1 ρβk , and its dynamics (ρβ)t = e−itHρβe
eitH .

Result:

E

(
sup
t,β

Ef ((ρβ)t)

)
≤ C
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Dynamical Entanglement: Corollaries
Dynamics of Up-Down Spins

If m = n

number of decompositions is n.

eigenfunctions are up and down spins: e↑ := | ↑〉 and e↓ := | ↓〉.
For α = (α1, α2, . . . , αn) ∈ {↑, ↓}n, the up-down configuration associated
with α is given by:

eα = eα1 ⊗ eα2 ⊗ . . .⊗ eαn

Result: E
(

sup
α
E(e−itH |eα〉〈eα|eitH)

)
< C. Barderson, Pollman, and Moore (2012).
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Dynamical Entanglement: Corollaries
Entanglement of Eigenstates

For m = 1 (No Decomposition)

Let ψ be an eigenfunction of the full XY chain H.

Result: E

(
sup
ψ
E(|ψ〉〈ψ|)

)
< C. Pastur/Slavin (2014). AR/Stolz (2015).

Let ρβ be a thermal state of the full XY chain H.

Result: E

(
sup
β
Ef (ρβ)

)
< C.
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Particle Number Transport
An Isotropic XY Chain in Random Transversal Magnetic Field

Hiso = −
n−1∑
j=1

[σxj σ
x
j+1 + σyj σ

y
j+1]−

n∑
j=1

νjσ
z
j

↓ Jordan-Wigner ↓

Hiso = c∗Ac+
(∑

j νj

)
1l, where c := (c1, c2, . . . , cn)t.

A :=


−ν1 µ

µ
. . .

. . .
. . .

. . . µ
µ −νn

, E

(
sup
|g|≤1
|〈ej , g(A)ek〉|

)
≤ Ce−η|j−k|.
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Particle Number Transport
The Particle Number Operator

N :=
∑
j∈Λ

|e↑〉〈e↑|j and NS :=
∑
j∈S
|e↑〉〈e↑|j .

N eα = keα, where k = |{j : αj =↑}|.

Let ρ = |eα〉〈eα| then 〈N〉ρ := TrNρ = k is the expected number of
up-spins.

[H,N ] = 0⇒ The number of up-spins is conserved in time.

ρt = e−itHisoρeitHiso is the time evolution of ρ.

〈NS〉ρt is the expected number of up-spins in S at time t.
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Particle Number Transport
Results

S
1

S
2

S
2

Fix S1 ⊂ Λ and S2 ⊂ Λ \ [minS1,maxS1].

Initial state: ρ =

n⊗
j=1

(
ηj 0
0 1− ηj

)
, with ηj = 0 for all j /∈ S2.

E
(

sup
t
〈NS1〉ρt

)
≤ 4C

(1 + e−η)2
e−ηdist(S1,S2)

Similar results for disordered Tonks-Girardeau gas, Seiringer/Warzel (2016).
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Energy Transport
Isotropic Case

S
1

S
2

S
2

Fix S1 = [a, b] ⊂ Λ and S2 ⊂ Λ \ S1.

Initial state: ρ =

n⊗
j=1

(
ηj 0
0 1− ηj

)
, with ηj = 0 for all j /∈ S2.

E
(

sup
t
|〈HS1〉ρt − 〈HS1〉ρ|

)
≤ 4CD

(1 + e−η)2
e−ηdist(S1,S2) ,

where D = supn ‖An‖.
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Energy Transport
Anisotropic Case

S

  

Fix S = [a, b] ⊂ Λ.

HS is the restriction of the XY chain to S.

Initial state: ρ =

n⊗
j=1

(
ηj 0
0 1− ηj

)
.

E
(

sup
t
|〈HS〉ρt − 〈HS〉ρ|

)
≤ C̃ ,
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Thank you.
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