TRANSPORT AND ENTANGLEMENT IN DISORDERED XY CHAINS

Houssam Abdul-Rahman University of Arizona

Based on a joint work with B. Nachtergaele, R. Sims, and G. Stolz.

QMath13, Georgia Tech

October 2016

- 4 回 ト 4 ヨ ト 4 ヨ ト

- The XY chain.
- Dynamical entanglement.
- Particle number transport.
- Energy transport.

э

・ロト ・回ト ・ヨト ・ヨト

The XY Chain

AN ANISOTROPIC XY CHAIN IN RANDOM TRANSVERSAL MAGNETIC FIELD

$$H = -\sum_{j=1}^{n-1} \mu_j [(1+\gamma_j)\sigma_j^x \sigma_{j+1}^x + (1-\gamma_j)\sigma_j^y \sigma_{j+1}^y] - \sum_{j=1}^n \nu_j \sigma_j^z$$

- $\Lambda = [1, n]$, Λ_0 a block of spins (subinterval of Λ).
- The Hilbert space: $\mathcal{H} := \bigotimes_{x \in \Lambda} \mathcal{H}_x = (\mathbb{C}^2)^{\otimes n}, \quad \dim \mathcal{H} = 2^n.$

•
$$\mu_j$$
, γ_j and u_j are i.i.d.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The XY Chain

JORDAN-WIGNER TRANSFORM

 \downarrow Jordan-Wigner \downarrow

$$H = \mathcal{C}^* M \mathcal{C}, \ \mathcal{C} := (c_1, c_1^*, c_2, c_2^*, \dots, c_n, c_n^*)^t.$$

${\cal M}$ is the block Jacobi matrix

$$M := \begin{pmatrix} -\nu_1 \sigma^z & \mu_1 S(\gamma_1) & & \\ \mu_1 S(\gamma_1)^t & \ddots & \ddots & \\ & \ddots & \ddots & & \\ & & \mu_{n-1} S(\gamma_{n-1})^t & -\nu_n \sigma^z \end{pmatrix},$$
$$S(\gamma) = \begin{pmatrix} 1 & \gamma \\ -\gamma & -1 \end{pmatrix}, \sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

TRANSPORT AND ENTANGLEMENT IN THE X^{*}

The XY Chain

Assumptions

Assumptions:

- The XY chain H has almost sure simple spectrum.
- M satisfies eigencorrelator localization, i.e $\mathbb{E}\left(\sup_{|g|\leq 1} \|g(M)_{jk}\|\right) \leq C_0(1+|j-k|)^{-\beta}$, for some $\beta > 6$.

Applications:

 $\mu_j = \mu, \ \gamma_j = \gamma \text{ for all } j \in \mathbb{N}.$

 ν_j are i.i.d from an absolutely continuous, compactly supported distribution.

- Isotropic case ($\gamma = 0$): $M \longrightarrow$ Anderson Model.
- Anisotropic case ($\gamma \neq 0$):
 - Large disorder case.
 - Uniform spectral gap for M around zero.

Elgart/Shamis/Sodin (2012).

Chapman /Stolz (2014).

5 / 18

THE ENTANGLEMENT ENTROPY AND THE ENTANGLEMENT OF FORMATION

Fix $\Lambda_0 \subseteq \Lambda$, consider the decomposition:

$$\mathcal{H} = \mathcal{H}_{\Lambda_0} \otimes \mathcal{H}_{\Lambda \setminus \Lambda_0}, ext{ where } \mathcal{H}_{\Lambda_0} = \bigotimes_{x \in \Lambda_0} \mathcal{H}_x, ext{ } \mathcal{H}_{\Lambda \setminus \Lambda_0} = \bigotimes_{x \in \Lambda \setminus \Lambda_0} \mathcal{H}_x.$$
 (1)

Let ρ be a pure state in $\mathcal{B}(\mathcal{H})$, then

$$\mathcal{E}(\rho) = -\operatorname{Tr}\left[\rho^1\log\rho^1\right], \ \, \text{where} \ \, \rho^1 = \operatorname{Tr}_{\mathcal{H}_2}\rho.$$

For any (mixed) state $ho \in \mathcal{B}(\mathcal{H})$, then

$$E_f(\rho) = \inf_{p_k, \psi_k} \sum_k p_k \mathcal{E}(|\psi_k\rangle \psi_k|).$$

HOUSSAM ABDUL-RAHMAN

MOTIVATION QUESTION

- For $1 \le \ell \le n$, let $H_{[1,\ell]}$ and $H_{[\ell+1,n]}$ be the restrictions of H to the corresponding interval.
- Let $\rho^{(1)}$ and $\rho^{(2)}$ be any eigenstates/thermal states of $H_{[1,\ell]}$ and $H_{[\ell+1,n]}$, respectively.

• We study
$$ho_t:=e^{-itH}\left(
ho^{(1)}\otimes
ho^{(2)}
ight)e^{itH}.$$

• ρ_t is an entangled state with respect to $\mathcal{H}_{[1,\ell]} \otimes \mathcal{H}_{[\ell+1,n]}$.

Question: /bat can we say about the entanglement of a

コンス 御とえ ほとえ ほどう ほ

MOTIVATION QUESTION

- For $1 \le \ell \le n$, let $H_{[1,\ell]}$ and $H_{[\ell+1,n]}$ be the restrictions of H to the corresponding interval.
- Let $\rho^{(1)}$ and $\rho^{(2)}$ be any eigenstates/thermal states of $H_{[1,\ell]}$ and $H_{[\ell+1,n]}$, respectively.

• We study
$$ho_t:=e^{-itH}\left(
ho^{(1)}\otimes
ho^{(2)}
ight)e^{itH}.$$

• ρ_t is an entangled state with respect to $\mathcal{H}_{[1,\ell]} \otimes \mathcal{H}_{[\ell+1,n]}$.

Question:

What can we say about the entanglement of ρ_t ?

ロト・日本・モト・モート

PROBLEM SETTING

In general

- Decompose Λ into disjoint intervals Λ_1 , Λ_2 , ..., Λ_m .
- H_{Λ_k} is the restriction of H to Λ_k .
- ψ_k is an eigenfunction of H_{Λ_k} , and $\rho_k = |\psi_k\rangle \langle \psi_k|$.
- Define $\rho = \bigotimes_{k=1}^{m} \rho_k$, and its dynamics $\rho_t = e^{-itH} \rho e^{itH}$.

Sac

8 / 18

Dynamical Entanglement: MAIN THEOREM

DYNAMICS OF PRODUCTS OF EIGENSTATES

THEOREM

There exists $C < \infty$ such that

$$\mathbb{E}\left(\sup_{t,\{\psi_k\}_{k=1,2,\ldots,m}}\mathcal{E}(\rho_t)\right) \leq C$$

for all n, m, any choice of the interval $\Lambda_0 \subset \Lambda$ and all decompositions $\Lambda_1, \ldots, \Lambda_m$ of $\Lambda = [1, n]$.

Dynamical Entanglement: COROLLARIES

DYNAMICS OF PRODUCT OF THERMAL STATES

- ρ_{β_k} is a thermal state of H_{Λ_k} .
- Define $\rho_{\beta} = \bigotimes_{k=1}^{m} \rho_{\beta_k}$, and its dynamics $(\rho_{\beta})_t = e^{-itH} \rho_{\beta} e^{e^{itH}}$.

Dynamical Entanglement: COROLLARIES

DYNAMICS OF UP-DOWN SPINS

If m = n

- number of decompositions is n.
- eigenfunctions are up and down spins: $e_{\uparrow} := |\uparrow\rangle$ and $e_{\downarrow} := |\downarrow\rangle$.

For $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \{\uparrow, \downarrow\}^n$, the up-down configuration associated with α is given by:

$$e_{\alpha} = e_{\alpha_1} \otimes e_{\alpha_2} \otimes \ldots \otimes e_{\alpha_n}$$

 $\textbf{Result:} \ \boxed{\mathbb{E}\left(\sup_{\alpha} \mathcal{E}(e^{-itH}|e_{\alpha}\rangle\langle e_{\alpha}|e^{itH})\right) < C.} \ \text{Barderson, Pollman, and Moore (2012).}$

ロト 《圖》 《문》 《문》 - 문

Dynamical Entanglement: COROLLARIES

ENTANGLEMENT OF EIGENSTATES

For m = 1 (No Decomposition)

Let ψ be an eigenfunction of the full XY chain H.

Result:
$$\mathbb{E}\left(\sup_{\psi} \mathcal{E}(|\psi\rangle\langle\psi|)\right) < C.$$

Pastur/Slavin (2014). AR/Stolz (2015).

・ロット (雪) (目) (日)

Let ρ_{β} be a thermal state of the full XY chain H.

Result:
$$\mathbb{E}\left(\sup_{\beta} E_f(\rho_{\beta})\right) < C.$$

Particle Number Transport

AN ISOTROPIC XY CHAIN IN RANDOM TRANSVERSAL MAGNETIC FIELD

$$H_{\rm iso} = -\sum_{j=1}^{n-1} [\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y] - \sum_{j=1}^n \nu_j \sigma_j^z$$

 \downarrow Jordan-Wigner \downarrow

$$H_{iso} = c^* A c + \left(\sum_j \nu_j\right) \mathbb{1}$$
, where $c := (c_1, c_2, \dots, c_n)^t$.

$$A := \begin{pmatrix} -\nu_1 & \mu & & \\ \mu & \ddots & \ddots & \\ & \ddots & \ddots & \mu \\ & & \mu & -\nu_n \end{pmatrix}, \quad \mathbb{E}\left(\sup_{|g| \le 1} |\langle e_j, g(A)e_k \rangle|\right) \le Ce^{-\eta|j-k|}.$$

ヘロト ヘヨト ヘヨト

Particle Number Transport

The Particle Number Operator

$$\mathcal{N} := \sum_{j \in \Lambda} |e_{\uparrow}\rangle \langle e_{\uparrow}|_j \text{ and } \mathcal{N}_S := \sum_{j \in S} |e_{\uparrow}\rangle \langle e_{\uparrow}|_j.$$

•
$$\mathcal{N}e_{\alpha} = ke_{\alpha}$$
, where $k = |\{j : \alpha_j = \uparrow\}|.$

- Let $\rho = |e_{\alpha}\rangle\langle e_{\alpha}|$ then $\langle N \rangle_{\rho} := \operatorname{Tr} N \rho = k$ is the expected number of up-spins.
- $[H, \mathcal{N}] = 0 \Rightarrow$ The number of up-spins is conserved in time.
- $\rho_t = e^{-itH_{\rm iso}}\rho e^{itH_{\rm iso}}$ is the time evolution of ρ .
- $\langle \mathcal{N}_S \rangle_{\rho_t}$ is the expected number of up-spins in S at time t.

(ロ・・(型・・(ヨ・・(ヨ・・(ロ)

Particle Number Transport

RESULTS

$$(\uparrow \uparrow -\cdots \uparrow \uparrow s_2 \downarrow -\cdots \downarrow f_{s_1} \downarrow -\cdots \downarrow f_{s_2} \downarrow \cdots \downarrow \downarrow \downarrow \cdots \downarrow \downarrow \cdots \downarrow \downarrow \downarrow \cdots \downarrow \downarrow \downarrow \cdots \downarrow \downarrow \downarrow$$

• Fix $S_1 \subset \Lambda$ and $S_2 \subset \Lambda \setminus [\min S_1, \max S_1]$.

• Initial state:
$$\rho = \bigotimes_{j=1}^{n} \begin{pmatrix} \eta_j & 0 \\ 0 & 1 - \eta_j \end{pmatrix}$$
, with $\eta_j = 0$ for all $j \notin S_2$.

$$\mathbb{E}\left(\sup_{t} \langle \mathcal{N}_{S_1} \rangle_{\rho_t}\right) \leq \frac{4C}{(1+e^{-\eta})^2} e^{-\eta dist(S_1,S_2)}$$

Similar results for disordered Tonks-Girardeau gas, Seiringer/Warzel (2016).

イロト イヨト イヨト

Energy Transport

ISOTROPIC CASE

$$(\uparrow \uparrow -\cdots \uparrow f_{S_2} \downarrow -\cdots \downarrow f_{S_j} \downarrow -\cdots \downarrow f_{S_j} \downarrow -\cdots \downarrow f_{S_2} \downarrow \cdots \downarrow \cdots$$

• Fix $S_1 = [a, b] \subset \Lambda$ and $S_2 \subset \Lambda \setminus S_1$.

• Initial state:
$$\rho = \bigotimes_{j=1}^{n} \begin{pmatrix} \eta_j & 0 \\ 0 & 1-\eta_j \end{pmatrix}$$
, with $\eta_j = 0$ for all $j \notin S_2$.

$$\mathbb{E}\left(\sup_{t} |\langle H_{S_1} \rangle_{\rho_t} - \langle H_{S_1} \rangle_{\rho}|\right) \leq \frac{4CD}{(1+e^{-\eta})^2} e^{-\eta dist(S_1,S_2)},$$

where $D = \sup_n ||A_n||$.

э

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Energy Transport

ANISOTROPIC CASE

• Fix
$$S = [a, b] \subset \Lambda$$
.

• H_S is the restriction of the XY chain to S.

• Initial state:
$$ho = \bigotimes_{j=1}^n egin{pmatrix} \eta_j & 0 \\ 0 & 1-\eta_j \end{pmatrix}.$$

$$\mathbb{E}\left(\sup_{t} |\langle H_S \rangle_{\rho_t} - \langle H_S \rangle_{\rho}|\right) \leq \tilde{C},$$

э

・ロト ・回ト ・ヨト ・ヨト

Thank you.

э

◆□ > ◆□ > ◆臣 > ◆臣 > ○